Increased Bacillus thuringiensis δ-endotoxin Cry3Aa toxicity against longhorned beetle by fusing to peptide specifically binding to beetle Cx-cellulase
نویسندگان
چکیده
Background Bacillus thuringiensis (Bt) Cry toxins have specific toxicity to susceptible insects. They are being used in transgenic plants or spray to control insect pests in agriculture [1, 2, 3]. Cry3A toxins are used extensively for biological control of coleopteran larvae [4, 5]. A Bt886-Cry3Aa gene that exhibited a high activity against Coleoptera insects isolated Our laboratory. Insect bioassay performed on Anoplophora glabripennis Motsch and Apriona germari Hope showed that the mortality of larvae fed with the product of this gene was over 60% [6]. However, both transgenic poplar with native Cry3Aa and withmodified-Cry3Aa by using poplar-prefered codons did little effects on longhorned beetles probably due to its low expression level in poplar.A peptide (LPPNPTK) named PCx that specifically bind to cellulase from midgut of longhorned beetle larvae was screened out from a phage display library previously in our laboratory[7].
منابع مشابه
Combining Hexanoic Acid Plant Priming with Bacillus thuringiensis Insecticidal Activity against Colorado Potato Beetle
Interaction between insect herbivores and host plants can be modulated by endogenous and exogenous compounds present in the source of food and might be successfully exploited in Colorado potato beetle (CPB) pest management. Feeding tests with CPB larvae reared on three solanaceous plants (potato, eggplant and tomato) resulted in variable larval growth rates and differential susceptibility to Ba...
متن کاملEnhancement of Bacillus thuringiensis Cry3Aa and Cry3Bb toxicities to coleopteran larvae by a toxin-binding fragment of an insect cadherin.
The Cry3Aa and Cry3Bb insecticidal proteins of Bacillus thuringiensis are used in biopesticides and transgenic crops to control larvae of leaf-feeding beetles and rootworms. Cadherins localized in the midgut epithelium are identified as receptors for Cry toxins in lepidopteran and dipteran larvae. Previously, we discovered that a peptide of a toxin-binding cadherin expressed in Escherichia coli...
متن کاملCyt1Aa protein of bacillus thuringiensis is toxic to the cottonwood leaf beetle, chrysomela scripta, and suppresses high levels of resistance to Cry3Aa
The insecticidal activity of Bacillus thuringiensis is due primarily to Cry and Cyt proteins. Cry proteins are typically toxic to lepidopterous, coleopterous, or dipterous insects, whereas the known toxicity of Cyt proteins is limited to dipterans. We report here that a Cyt protein, Cyt1Aa, is also highly toxic to the cottonwood leaf beetle, Chrysomela scripta, with a median lethal concentratio...
متن کاملA P-Glycoprotein Is Linked to Resistance to the Bacillus thuringiensis Cry3Aa Toxin in a Leaf Beetle
Chrysomela tremula is a polyvoltine oligophagous leaf beetle responsible for massive attacks on poplar trees. This beetle is an important model for understanding mechanisms of resistance to Bacillus thuringiensis (Bt) insecticidal toxins, because a resistant C. tremula strain has been found that can survive and reproduce on transgenic poplar trees expressing high levels of the Cry3Aa Bt toxin. ...
متن کاملBacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle.
Cry1 delta-endotoxins of Bacillus thuringiensis are generally active against lepidopteran insects, but Cry1Ba and Cry1Ia have additional, though low, levels of activity against coleopterans such as the Colorado potato beetle. Here we report the construction of Cry1Ba/Cry1Ia hybrid toxins which have increased activities against this insect species.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2011